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THE SOUND FIELD OFA ROTOR IN A STATIONARY DUCT
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A method is developed for the prediction of noise from rotors in an axisymmetric duct at
rest. The technique combines a previously developed model for noise from disc sources
with a boundary integral equation method for scattering from the duct surface. Recent
developments in the theory of Gaussian quadrature and generalized elliptic integrals are
used to simplify the implementation of the formulation. The sound field of a simplified
model ducted rotor is then calculated and its structure examined in the framework of
known features of the field around rotating sources. It is found that, as for an open rotor,
the sonic radius plays an important role in the structure of the field.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

One of the most striking features of modern aircraft compared to earlier designs is their
comparatively low noise level. A recent survey of trends in aircraft performance and
operating characteristics [1] shows that average take-off noise levels for commercial jet
aircraft have fallen by 25 dB in 30 years. To some degree this reduction has been brought
about by stricter regulations forcing airlines to operate, and manufacturers to build,
quieter aircraft but it has only been made possible by the improved understanding of
aerodynamic noise generation processes. In particular, models based on the work of
Lighthill [2] have led to large reductions in jet exhaust noise: the comparatively low noise
generated by modern high bypass engines is a striking example of the eighth power law in
action. The reduction of jet noise and the move towards physically larger engines have,
however, caused new problems. As jet noise is reduced, the tonal noise generated by the
fan becomes subjectively more important and, being tonal, makes the engine noise more
annoying, a point noted in the early study of Tyler and Sofrin [3]. Furthermore, in modern
engines the tonal noise is louder because of the larger fan and the larger intake from which
noise radiates. This has led to greater interest in the problem of noise propagation in, and
radiation from, ducts.

2. DUCTED FAN NOISE

The calculation of noise radiated by ducted fans is a problem in source modelling and in
acoustic scattering. In this work, the source will be modelled as a disc using the methods of
previous studies of the structure of rotating sound fields [4, 5]. This allows the accurate
calculation of the sound field of a rotating source even very close to the disc, an essential
point given the small tip clearances typical of ducted fans. Since the acoustic field of a disc
source has features not seen on ring sources, the use of a realistic source model is
important in predicting the acoustic field.
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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The field scattered by the duct is calculated using a Helmholtz boundary integral
equation. This is solved by using a boundary element method employing recent advances
in numerical quadrature of singular functions and in the theory of generalized elliptic
integrals, which are used to represent the singular part of the Green function in
axisymmetric problems. The resulting numerical method is efficient, accurate and
capable of being adapted to use advanced solution techniques such as that of Burton
and Miller [6].

2.1. SOUND FROM DUCTED SOURCES

The problem of noise radiation from ducted rotors can be viewed as a problem in duct
acoustics or as a scattering problem. Much of the physical insight into propagation in, and
radiation from, ducts has come from ‘‘duct acoustics’’ models where the wave equation is
solved subject to a boundary condition imposed on the duct wall and with the implicit
assumption that the duct is long, i.e., infinite or semi-infinite. By using such an approach it
has been possible to solve analytically realistic problems which demonstrate the behaviour
of waves propagating in ducts. The sound field in a duct is composed of a sum of modes
which have, in a circular duct, sinusoidal azimuthal variation and a Bessel function radial
variation. At a given frequency o; the acoustic pressure p in a circular duct of radius R is
made up of modes of the form [7]

pðr; z; y; tÞ ¼ Pmne
�jotJmðkmnrÞejðkzmn z�myÞ;

where m is an integer, Jm is a Bessel function of order m; kmn is the nth solution of

J0mðkmnRÞ ¼ 0

and the axial wavenumber kzmn
is given by

k2
zmn

¼ k2 � k2
mn;

where the temporal wavenumber k ¼ o=c: When k5kmn; kzmn
is imaginary so that the

corresponding mode decays exponentially in the duct and is said to be ‘‘cut off’’. When the
duct radius varies axially, the eigenvalues kmn also vary and modes can be cut off in some
parts of the duct, but not in others [8] so that the duct acts as a filter. The field inside the
duct depends on the source, which generates the modes, and the duct termination
conditions, which specify how the field inside the duct is coupled to the radiated field
outside. The number of modes which are ‘‘cut on’’ (propagate) will depend, for a given
azimuthal order m; on the frequency of the source. For each mode, there is a cut-off
frequency and the source frequency must exceed this value, if a mode is to propagate. This
frequency o can be non-dimensionalized on the speed of sound c and the duct radius R;
yielding a Mach number M ¼ oR=c; which is the non-dimensional velocity at which the
azimuthally varying pressure pattern sweeps the duct wall. In order to propagate, an
acoustic mode must have a frequency higher than cut-off or, equivalently, a Mach number
higher than the cut-off value.

2.2. ROTATING SOUND FIELDS

The sound field radiated by rotating sources is a complex and rich one, especially at high
frequency. The structure of such fields has been studied by using a variety of approaches
which agree on the fundamental features. In a number of papers on the physical structure
of such acoustic fields [4, 5, 9, 10], it has been shown that the field is characterized by the
sonic radius r of the rotating source. This is the distance from the axis of rotation at which
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the source has, or would have, sonic velocity relative to the fluid. For a stationary source
rotating at angular velocity O; r ¼ c=O: The sonic radius marks the division of the acoustic
field between the near field and the far field or radiation zone. In the near field, acoustic
energy spirals around the axis many times before escaping into the far field across a
transition region of thickness equal to roughly half an acoustic wavelength. In
‘‘tunnelling’’ across this transition region, there is an exponential decay in the acoustic
energy [10] so that the radiation in the far field is usually quite weak. The exception to this
is the field of a supersonic rotor. In this case, part of the source lies outside the sonic radius
and no energy is lost in tunnelling across the transition region. From reciprocity
considerations [11], it is obvious that the acoustic field must decay across the transition
region in either direction.

The objective of the numerical study presented in section 4 is to examine the effect of
different fan speeds in terms of the position of the sonic radius relative to the surrounding
duct.

2.3. COMPUTATIONAL METHODS

The calculation of noise radiated by ducted sources is presently best performed by using
the finite element method [7]. The technique has a number of advantages over finite
difference and boundary integral approaches which make it the method of choice for
realistic problems, especially in calculating noise from aeroengine intakes. These
advantages include the treatment of sound propagation in non-uniform mean flows and
the ability to handle complex geometries. There are certain difficulties which must be
overcome, however, including the imposition of a physically correct radiation boundary
condition at the edge of the computational domain. There also remains the problem that a
large part of the domain must be meshed, which can be computationally intensive at high
frequency. That said, the problem of the radiation boundary condition has been largely
solved and many of the difficulties which arise in applying the finite element method to
realistic problems would also arise in any other approach to the radiation problem.

For the simplified problem treated in this paper, however, a boundary element method
has been adopted. The reasons for this include the lower dimensionality of the problem,
making its implementation simpler, and the requirement to calculate the acoustic field only
at points of interest, rather than over some computational domain. As yet, a boundary
integral method capable of solving problems of the same complexity as those covered by
the finite element approach does not exist but a number of steps have been made towards
greater realism. In particular, the recent work of Dunn et al. [12] has led to a method
capable of solving for scattering by straight, infinitesimal wall-thickness ducts in a mean
flow, including the effects of an acoustic liner. The method presented in this paper does not
include the effect of a mean flow but does allow a more general geometry to be modelled.

3. FORMULATION

The problem to be solved is that of calculating the field scattered by a hard-walled
axisymmetric body subject to an incident field from a disc source. This can be done using a
Helmholtz integral equation solved using a boundary element method. The incident fan
field is calculated using an approach derived in previous work [4] which allows the acoustic
field to be accurately calculated in the near field, essential in a realistic model for ducted
fan noise, where tip clearances are typically small.



Figure 1. Geometry definition.
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The duct geometry is shown in Figure 1. The duct is axisymmetric and formed by the
rotation of a generating curve G about the z-axis. Cylindrical co-ordinates ðr; y; zÞ are
used. The outward pointing surface normal is denoted by n: The boundary integral
equation for the surface pressure is that given by Wu and Lee [13],

CðxÞPðxÞ ¼
Z

A

G
@P

@n1
� P

@G

@n1
dA ð1Þ

with

CðxÞ ¼ 1þ
Z

A

@G0

@n1
dA:

The body surface is A; P is pressure at frequency o and G is the free space Green
function,

G ¼ ejkR

4pR
; R ¼ ½r2 þ r21 � 2rr1 cos y1 þ ðz � z1Þ2	1=2; ð2Þ

where the wavenumber k ¼ o=c: In calculating the geometric constant C; G0 is G

evaluated at k ¼ 0: The evaluation point for pressure is x; and subscript 1 denotes
quantities at a source position. Note that the convention for the direction of the surface
normal is the opposite of that adopted by Wu and Lee [13].

To calculate the scattered field, equation (1) must be solved subject to the appropriate
boundary condition and can then be used to calculate the radiated field. The boundary
condition for a rigid surface is that the surface normal velocity be zero or, in terms of the
incident and scattered fields pinc and psc; respectively,

@psc

@n

 �@pinc

@n
:

The incident field will be the field radiated by a source distribution characteristic of a
single harmonic of a rotating disc source.

To perform the calculations, the incident and scattered fields are decomposed into
azimuthal modes:

p ¼
X1

m¼�1
pmðr; zÞ ejmy:

An incident field can be decomposed into such modes and the sound field of a rotating
source consists of one such mode at a harmonic frequency. For this reason, we will
consider only single azimuthal modes from now on. Upon assuming that only a single
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mode is present and changing to cylindrical co-ordinates, equation (1) becomes

Cðr; zÞpmðr; zÞ ¼
Z
G

gm
@pm

@n1
� pm

@gm

@n1

� �
r1 dG; ð3Þ

where

gm ¼
Z 2p

0

ejðkRþmy1Þ

4pR
dy1:

The main numerical difficulty in solving this integral equation is the isolation and
integration of the singularity which appears in gm as the field point approaches the source
position. This can be done in a number of ways but the most convenient is to regularize the
integral by subtracting out the singular part and treating it separately. This leads to a quite
general expression which can be evaluated in a number of ways and which requires no
special assumptions about the duct geometry. The Green function gm can be rewritten as
follows:

gm ¼ gðbÞ
m þ gðsÞ

m ; gðbÞ
m ¼

Z 2p

0

ejmy1 e
jkR � 1

4pR
dy1; ð4; 5Þ

gðsÞ
m ¼

Z 2p

0

ejmy1

4pR
dy1: ð6Þ

In this form, g
ðbÞ
m is bounded as ðr; zÞ ! ðr1; z1Þ and can be integrated by using standard

numerical schemes while the singular part g
ðsÞ
m can be evaluated analytically by using

recursion relations or asymptotic expansions based on well-understood special
functions.

3.1. EVALUATION OF SINGULARTERMS

The singular part of gm can be expressed as a generalized elliptic-type integral, a special
function which has been extensively studied [14–17] due to its importance in radiation
problems. A number of methods have been published for the evaluation of such functions
over the full range of useful parameters. g

ðsÞ
m can be rewritten as

gðsÞ
m ¼ 1

4pr
Hð1;m; lÞ; ð7Þ

Hðn;m; lÞ ¼
Z 2p

0

cos 2mf

ð1� l2 cos2 fÞn=2
df; ð8Þ

where

r2 ¼ ðr þ r1Þ2 þ ðz � z1Þ2

and

l2 ¼ 4rr1

r2
:

Similarly, the derivatives of g
ðsÞ
m ; required for the calculation of @gm=@n1 can be

expressed as

@g
ðsÞ
m

@x
¼ � 1

4pr2
@r
@x

Hð1;m; lÞ þ l
4pr

@l
@x

Hð3;m; lÞ; ð9Þ
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where x is either r1 or z1: The functions required to evaluate the derivatives of g
ðsÞ
m are

@r
@r1

¼ r þ r1

r
;

@l
@r1

¼ l
2r1

� l
r
@r
@r1

;

@r
@z1

¼ �z � z1

r
;

@l
@z1

¼ �l
r
@r
@z1

:

A number of recursion methods have been given for the evaluation of g
ðsÞ
m [18–20] but

for high m; it is desirable to use methods which do not risk inaccuracy due to possible
instability or loss of precision in the recursion relation. For this reason, the formulae given
by Bj .oorkberg and Kristensson [21] are used. The function H can be expressed in terms of a
hypergeometric series:

Hðn;m; lÞ ¼ p
m!

n

2

� �
m
23�nl01�nl2mð1þ l0Þn�2m�2

 2F1 1� n

2
; 1þ m � n

2
; 1þ m;

1� l0

1þ l0

� �2
 !

; ð10Þ

where l0 ¼ ð1� l2Þ1=2: Direct computation of the series is lengthy when l ! 1 and in this
case an asymptotic series can be used [21]. For n ¼ 2n0 þ 1 (which covers all of the cases of
interest in this study)

Hð2n0 þ 1;m; lÞ ¼ l2ml01�n

ð1=2Þn0

Xn0�1

k¼0

ð�1Þk
Ckðn0 � 10kÞ!l02k þ

X1
k¼n0

Ck

ðk � n0Þ!hkðl0Þl02k

" #
; ð11Þ

where

Ck ¼ ð1
2
þ mÞkð12 þ m � n0Þk=k!;

hkðl0Þ ¼cð1þ kÞ þ cð1þ k � n0Þ � cð1
2
þ m þ kÞ

� cð1
2
þ m � n0 þ kÞ � 2 log l0:

Here, c is the logarithmic derivative of the gamma function and ðaÞn is Pochammer’s
symbol

ðaÞn ¼ Gða þ nÞ
GðaÞ :

These formulae give all the information necessary to evaluate efficiently the singular part
of the Green function.

3.2. NUMERICAL IMPLEMENTATION

Equation (3) is solved using a boundary element method. The boundary G is discretized
using isoparametric elements, as in reference [20]. Each element is discretized using n

points and all quantities on the element are then interpolated using the n shape functions
Nk; k ¼ 1; . . . ; n: The local co-ordinate on the element is Z; 04Z41 and a quantity f on
the element is evaluated by using

f ¼
Xn

k¼1

NkðZÞfk
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with fk the value of f at node k: In this study, four-node elements were used with the cubic-
shape functions

N1 ¼ 1
2

L1ð3L1 � 1Þð3L1 � 2Þ; N2 ¼ 1
2

L2ð3L2 � 1Þð3L2 � 2Þ;

N3 ¼ 9
2 L1L2ð3L1 � 1Þ; N4 ¼ 9

2 L2L1ð3L2 � 1Þ;

L1 ¼ 1� Z; L2 ¼ Z:

Use of cubic interpolation guarantees smoothness of the surface quantities and of their
derivatives.

An important part of a realistic scattering calculation is the treatment of sharp edges on
the scattering body. At a sharp edge, the direction of the surface normal changes abruptly
and depends on the direction in which the edge is approached. In this work, sharp corners
are modelled using double nodes [20]. By placing two nodes at the sharp edge, two
different normals can be specified. By making each of the nodes part of the appropriate
element, the correct behaviour of the normal can be enforced as the edge is approached
from either side (Figure 2).

The integration of the singular part of the Green function must also be considered. A
number of approaches have been used in the past, including analytical integration for
restricted geometries [12, 22] or for linear surface elements [23]. In this work, a generalized
Gaussian quadrature has been used. This is a method which provides base points and
weights as for standard Gaussian quadrature but for the integration of functions with
singularities of specified form. Algorithms are available for the derivation of base points
and weights [24] and coefficients have been published for integration over isoparametric
elements of functions containing a logarithmic singularity [25]. The advantages of using
such a method in this case are that it can be easily adapted to high order elements, that no
restriction is placed on the geometry or on the form of discretization and that no special
treatment of the singular functions is required. A further advantage, of use in future work,
is that algorithms have recently been published to derive quadrature rules for singular and
hypersingular integrals [26]. This means that the hypersingular boundary integral
equations required for lined ducts [12] can be solved with identical numerical procedures,
only the quadrature coefficients being changed.
Figure 2. Treatment of a sharp edge: four node elements with a repeated node at the edge. Solid circles
represent end points of elements, open circles interior points. The normal n varies smoothly approaching the
sharp edge from either side but is discontinuous at the edge.
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3.3. SOURCE MODEL

The rotor is modelled as a distributed axial force (acoustic dipole) with azimuthally
varying strength:

fz ¼ ejmy: ð12Þ

Standard theory gives an integral for the resulting incident field [5],

pm ¼ ejmyz

Z 1

0

Z 2p

0

ejðkR�my1Þ

4pR3
ð1� jkRÞ dy1r1 dr1; ð13Þ

where lengths have been scaled on disc radius a and k ¼ mMt where Mt ¼ Oa=c; the
source tip Mach number. The acoustic pressure pm can be calculated by evaluation of the
double integral in equation (13) or by using an alternative method developed for the study
of rotor noise fields [4, 5]. A source model of this type is used in preference to point or line
source models [12] because of its greater realism. From studies of rotor noise fields, it has
been found that a disc source model contains features which are not to be seen in the
field around ring sources. In particular, it does not contain singularities in the near field,
an important point in calculating the field incident on the duct near the rotor. As is
common in ducted source predictions [7], the effect of the duct on the source has been
neglected.

4. RESULTS

The scattering calculation method developed in section 3 has been applied to the
problem of radiation from a ducted fan with the geometry shown in Figure 3. The duct
generator G is a Joukowsky section with length and thickness as shown and the rotor
placed at the quarter chord. The geometry is held constant while the rotor tip Mach
number is varied to examine the effect on the radiated field. Three tip Mach numbers
were chosen, Mt ¼ 0�89; 1�1 and 1�5: The azimuthal order m ¼ 16: Figure 3 also shows the
co-ordinate system ðR;cÞ; centred on the intake, which is used to plot the acoustic
directivity.

For the specified azimuthal order, the maximum and minimum cut-off Mach numbers
(i.e., the cut-off Mach numbers at the minimum and maximum duct internal radius) are
1�129 and 1�0035; respectively. For the Mt ¼ 0�89 rotor, no mode is cut on at any point; for
the Mt ¼ 1�1 rotor, the first mode is just cut off at the minimum radius and cut on at the
maximum radius; for the Mt ¼ 1�5 rotor, two modes are cut on at the minimum radius and
three at the maximum. The resulting acoustic directivities are shown in Figures 4–6. In
each case, the magnitude of the radiated pressure jpj is plotted against c at fixed R: In the
Figure 3. Duct geometry for calculations: L ¼ 2rt; rd ¼ 1�125rt and h ¼ L=10:



Figure 4. Ducted fan noise directivities, Mt ¼ 0�89: Upper plot R ¼ 64 and lower plot R ¼ 8:

Figure 5. Ducted fan noise directivities, Mt ¼ 1�1: Upper plot R ¼ 64 and lower plot R ¼ 8:
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upper half of each polar plot R ¼ 64 while in the lower half R ¼ 8 with length scaled on
rotor radius. To ease comparison, the pressures have been scaled on their maximum value
at each value of R and, as a reference, a dashed line indicates the angle from the centre of
the intake plane to the duct trailing edge. Figure 7 shows the maximum value of pressure
as a function of R:



Figure 6. Ducted fan noise directivities, Mt ¼ 1�5: Upper plot R ¼ 64 and lower plot R ¼ 8:

Figure 7. Maximum radiated pressure against R: solid line, Mt ¼ 0�89; dashed line Mt ¼ 1�1; dot-dash line
Mt ¼ 1�5:
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The maximum value selected for R is greater than the Rayleigh length ka2 where a is the
source radius. For radial separations outside this length, by analogy with the field from a
baffled piston [27], a characteristic far field develops. It has been found [28] that the
acoustic field in front of the intake plane and behind the exhaust plane is well
approximated by a Rayleigh integral so that the Rayleigh distance is a useful parameter. In
each of the directivities shown, for R ¼ 64 the radial separation R sin c > ka2 when c >
308 so that the directivity pattern shown is characteristic of the far field over most of the
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range of c: In the lower half of the figure, where R ¼ 8; the whole range of angle lies in the
near field.

Figure 4 shows the directivity of the noise for Mt ¼ 0�89; a case in which one radial
mode is just cut off. It can be seen from this figure that there is some radiation, with a lobe
ahead of the intake plane in the far field ðR ¼ 64Þ but reference to Figure 7 will show that
the absolute level is quite low. It is also clear that there is very little radiation from the
exhaust plane, probably because the source is further from the exhaust than from the
intake and so any mode is very strongly attenuated by the time it reaches the exhaust. The
mode propagating towards the intake is below cut-off but enough energy is transmitted to
generate a measurable amount of noise.

When Mt ¼ 1�1; Figure 5, the first radial mode is cut off at the source plane but cut on
at the intake and exhaust. The radiated noise is thus much stronger, as seen in Figure 7,
but still comparatively weak behind the exhaust. The complex multilobed radiation
pattern behind the intake plane, c > 908 is mainly due to interference between the intake
and exhaust plane sources and to radiation from the duct side walls.

Finally, when Mt ¼ 1�5; two modes are cut on at the source plane, and three at the
intake and exhaust. This results in stronger radiation both in front of and behind the duct,
with one strong lobe in the far field ahead of the intake and a complex interference pattern
near the trailing edge. The lobe is also visible in the near field, but is less noticeable due to
the scaling on maximum pressure.

The plot of maximum radiated pressure, Figure 7, shows the effect of varying the source
frequency. The Mt ¼ 0�89 data are an order of magnitude lower than for the higher tip
Mach numbers. The modes generated by the source are incapable of propagating strongly
and are highly attenuated at the duct exit, thus radiating little noise to the far field. The
supersonic rotor pressures, however, are quite close, despite the difference in tip Mach
number. This is probably due to the fact that the presence or absence of propagating
modes is more important than the relative strengths of the sources. If propagating modes
are present, there will be strong radiation into the far field, while if all modes are cut off,
only a weak radiated pressure field is possible. The similarity in level, though not
directivity, between the two supersonic rotor cases is due to the fact that the two sources
generate propagating modes.

5. CONCLUSIONS

A boundary element method for scattering by axisymmetric bodies has been developed
and applied to the problem of radiation by a ducted rotor. The method used is a standard
Helmholtz integral technique with recently developed methods in Gaussian quadrature
and the theory of generalized elliptic integrals used to simplify the implementation. In
conjunction with a previously developed rotor noise model [4, 5], the radiated field of a
ducted rotor at a number of tip Mach numbers has been calculated. It was found that the
essential features of the radiated field were captured and that the relationship between the
rotor and modal cut-off Mach numbers was as expected. It was also observed that the duct
intake radiation can be viewed as that due to a disc source distributed over the intake,
giving results similar to those seen in open rotor noise studies.

The obvious, and essential, extension of the work presented here is to the study of noise
from ducted rotors in forward flight. If such a study is to be carried out by using a
boundary element method, the methods and analysis developed in this paper will be useful.
A possible approach to the problem of noise generation will be to treat the problem from
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an integrated aerodynamic and acoustic point of view [29, 30] in order to treat the effect of
non-uniform flow and of the duct wake on the noise field.
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